HomeMy WebLinkAboutSECTION_10 SOUTHWEST PONDS - DEWEY HILL ROAD AREA
Barr Engineering Company 10-1
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\Report\December 15 2011 FINAL
DRAFT\Edina_SWMP_FINAL_v1.docx
10.0 Southwest Ponds (Dewey Hill Road Area)
10.1 General Description of Drainage Area
Figure 10.1 depicts the drainage area to the Southwest Ponds drainage basin and the individual
subwatersheds within this area. The Southwest Ponds watershed is located in southwest Edina,
bordered by West 70th Street to the north, West 78th Street to the south, Gleason Road on the west,
and the SOO Line railroad on the east. The drainage basin encompasses approximately 461 acres
that ultimately drain to the South Fork of Nine Mile Creek south of West 78th Street.
10.1.1 Drainage Patterns
The stormwater system within this drainage area is comprised of storm sewers, ditches, overland
flow paths, wetlands, and ponding basins. The Southwest Ponds drainage basin has been divided into
two major watersheds based on the drainage patterns. These major watersheds are depicted in
Figure 10.2. Each major watershed has been further delineated into numerous subwatersheds. The
naming convention for each subwatershed is based on the major watershed it is located within.
Table 10.1 lists each major watershed and the associated subwatershed naming convention.
Table 10.1 Major Watersheds within the Southwest Ponds Drainage Basin
Major Watershed
Subwatershed Naming
Convention
# of
Subwatersheds
Drainage
Area (acres)
Southwest Ponds SWP_## 65 411
Nine Mile- 494 NM494_## 7 50
10.1.1.1 Southwest Ponds
The Southwest Ponds watershed encompasses approximately 411 acres. The land use within the
watershed is mainly low and medium density residential, in addition to the commercial and industrial
area on the eastern portion of the watershed along Cahill Road and Lewis Park. The watershed is
characterized by a series of ponding basins, that ultimately outlet to the South Fork of Nine Mile
Creek via a storm sewer system that travels southward from the intersection of West 78th Street and
Delaney Boulevard and discharges into a detention pond north of Interstate 494. Discharge from this
detention pond flows beneath Interstate 494 and enters the South Fork of Nine Mile Creek.
10.1.1.2 Nine Mile 494
The Nine Mile 494 watershed encompasses approximately 50 acres. The land use within the
watershed is mainly low and medium density residential. There is one stormwater detention basin
within the watershed. The watershed ultimately drains to the South Fork of Nine Mile Creek through
a storm sewer system that discharges to the Creek just southeast of the intersection of Marth Court
and West 78th Street, on the north side of Interstate 494
Barr Engineering Company 10-2
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\Report\December 15 2011 FINAL
DRAFT\Edina_SWMP_FINAL_v1.docx
10.2 Stormwater System Analysis and Results
10.2.1 Hydrologic/Hydraulic Modeling Results
The 10-year and 100-year frequency flood analyses were performed for the Southwest Ponds
drainage basin. The 10-year analysis was based on a ½-hour storm of 1.65 inches of rain. The
100-year analysis was based on a 24-hour storm event of 6 inches of rain. Table 10.2 presents the
watershed information and the results for the 10-year and 100-year frequency hydrologic analyses for
the Southwest Ponds basin.
The results of the 10-year and 100-year frequency hydraulic analysis for the Southwest Ponds
drainage basin are summarized in Table 10.3 and Table 10.4. The column headings in Table 10.3 are
defined as follows:
Node/Subwatershed ID—XP-SWMM node identification label. Each XP-SWMM node
represents a manhole, catchbasin, pond, or other junction within the stormwater system.
Downstream Conduit—References the pipe downstream of the node in the storm sewer system.
Flood Elevation—The maximum water elevation reached in the given pond/manhole for each
referenced storm event (mean sea level). In some cases, an additional flood elevation has been
given in parenthesis. This flood elevation reflects the 100-year flood elevation of Nine Mile
Creek, per the Nine Mile Creek Watershed Management Plan, May 1996.
Peak Outflow Rate—The peak discharge rate (cfs) from a given ponding basin for each
referenced storm event. The peak outflow rates reflect the combined discharge from the pond
through the outlet structure and any overflow.
NWL—The normal water level in the ponding basin (mean sea level). The normal water levels
for the ponding basins were assumed to be at the outlet pipe invert or at the downstream control
elevation.
Flood Bounce—The fluctuation of the water level within a given pond for each referenced storm
event.
Volume Stored—The maximum volume (acre-ft) of water that was stored in the ponding basin
during the storm event. The volume represents the live storage volume only.
Table 10.4 summarizes the conveyance system data used in the model and the model results for the
storm sewer system within the Southwest Ponds drainage basin. The peak flows through each
conveyance system for the 10-year and 100-year frequency storm events are listed in the table. The
values presented represent the peak flow rate through each pipe system only and does not reflect the
combined total flow from an upstream node to the downstream node when overflow from a
manhole/pond occurs.
Barr Engineering Company 10-3
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\Report\December 15 2011 FINAL
DRAFT\Edina_SWMP_FINAL_v1.docx
Figure 10.3 graphically represents the results of the 10-year and 100-year frequency hydraulic
analyses. The figure depicts the Southwest Ponds drainage basin boundary, subwatershed
boundaries, the modeled storm sewer network, surcharge conditions for the XP-SWMM nodes
(typically manholes), and the flood prone areas identified in the modeling analyses.
One of the objectives of the hydraulic analyses was to evaluate the level of service provided by the
current storm sewer system. The level of service of the system was examined by determining the
surcharge conditions of the manholes and catch basins within the storm sewer system during the
10-year and 100-year frequency storm events. An XP-SWMM node was considered surcharged if the
hydraulic grade line at that node breached the ground surface (rim elevation). Surcharging is
typically the result of limited downstream capacity and tailwater impacts. The XP-SWMM nodes
depicted on Figure 10.3 were color coded based on the resulting surcharge conditions. The green
nodes signify no surcharging occurred during the 100-year or 10-year frequency storm event, the
yellow nodes indicate surcharging during the 100-year frequency event, and the red nodes identify
that surcharging is likely to occur during both a 100-year and 10-year frequency storm event.
Figure 10.3 illustrates that several XP-SWMM nodes within the Southwest Ponds drainage basin are
predicted to experience surcharged conditions during both the 10-year and 100-year frequency storm
events. This indicates a probability greater than 10 percent in any year that the system will be
overburdened and unable to meet the desired level of service at these locations. These manholes and
catch basins are more likely to experience inundation during the smaller, more frequent storm events
of various durations.
Another objective of the hydraulic analysis was to evaluate the level of protection offered by the
current stormwater system. Level of protection is defined as the capacity provided by a municipal
drainage system (in terms of pipe capacity and overland overflow capacity) to prevent property
damage and assure a reasonable degree of public safety following a rainstorm. A 100-year frequency
event is recommended as a standard for design of stormwater management basins. To evaluate the
level of protection of the stormwater system within the Southwest Ponds drainage area, the 100-year
frequency flood elevations for the ponding basins and depressed areas were compared to the low
elevations of structures surrounding each basin. The low elevations were initially determined using
2-foot topographic information and aerial imagery in ArcView. Where 100-year frequency flood
levels of the ponding areas appeared to potentially threaten structures, detailed low house elevations
were obtained through field surveys. The areas that were predicted to flood and threaten structures
during the 100-year frequency storm event are highlighted in Figure 10.3. Discussion and
recommended implementation considerations for these areas are included in Section 10.3.
10.2.2 Water Quality Modeling Results
The effectiveness of the stormwater system in removing stormwater pollutants such as phosphorus
was analyzed using the P8 water quality model. The P8 model simulates the hydrology and
phosphorus loads introduced from the watershed of each pond and the transport of phosphorus
throughout the stormwater system. Since site-specific data on pollutant wash-off rates and sediment
characteristics were not available, it was necessary to make assumptions based on national average
Barr Engineering Company 10-4
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\Report\December 15 2011 FINAL
DRAFT\Edina_SWMP_FINAL_v1.docx
values. Due to such assumptions and lack of in-lake water quality data for model calibration, the
modeling results were analyzed based on the percent of phosphorus removal that occurred and not
based on actual phosphorus concentrations.
Figure 10.4 depicts the results of the water quality modeling for the Southwest Ponds drainage basin.
The figure shows the fraction of total phosphorus removal for each water body as well as the
cumulative total phosphorus removal in the watershed. The individual water bodies are colored
various shades of blue, indicating the percent of the total annual mass of phosphorus entering the
water body that is removed (through settling). It is important to note that the percent of phosphorus
removal is based on total phosphorus, including phosphorus in the soluble form. Therefore, the
removal rates in downstream ponds will likely decrease due to the large soluble fraction of incoming
phosphorus that was unsettleable in upstream ponds. The watersheds are depicted in various shades
of gray, indicating the cumulative total phosphorus removal achieved. The cumulative percent
removal represents the percent of the total annual mass of phosphorus entering the watershed that is
removed in the pond and all upstream ponds.
Ponds that had an average annual total phosphorus removal rate of 60 percent or greater, under
average climatic conditions, were considered to be performing well. For those ponds with total
phosphorus removal below 60 percent, the permanent pool storage volume was analyzed to determine
if additional capacity is necessary. Based on recommendations from the MPCA publication
Protecting Water Quality in Urban Areas, March 2000, the permanent pool for detention ponds
should be equal to or greater than the runoff from a 2.0-inch rainfall, in addition to the sediment
storage for at least 25 years of sediment accumulation. For ponds with less than 60 percent total
phosphorus removal, the recommended storage volume was calculated for each pond within the
drainage basin and compared to the existing permanent pool storage volume.
10.3 Implementation Considerations
The XP-SWMM hydrologic and hydraulic modeling analyses and P8 water quality analysis helped to
identify locations throughout the watershed where improvements to the City’s stormwater
management system may be warranted. The following sections discuss potential mitigation
alternatives that were identified as part of the 2003 modeling analyses. As opportunities to address
the identified flooding issues and water quality improvements arise, such as street reconstruction
projects or public facilities improvements, the City will use a comprehensive approach to stormwater
management. The comprehensive approach will include consideration of infiltration or volume
retention practices to address flooding and/or water quality improvements, reduction of impervious
surfaces, increased storm sewer capacity where necessary to alleviate flooding, construction and/or
expansion of water quality basins, and implementation of other stormwater BMPs to reduce pollutant
loading to downstream waterbodies.
Barr Engineering Company 10-5
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\Report\December 15 2011 FINAL
DRAFT\Edina_SWMP_FINAL_v1.docx
10.3.1 Flood Protection Projects
The 2003 hydrologic and hydraulic modeling analysis identified several locations within the
Southwest Ponds drainage basin where the 100-year level of protection is not provided by the current
stormwater system. The problem areas identified in 2003 are discussed below.
As part of the 2003 modeling analysis, potential corrective measures were identified for the problem
areas for purposes of developing planning-level cost estimates. These preliminary corrective
measures are also discussed below. As the City evaluates the flooding issues and potential system
modifications in these areas, consideration will be given to other potential system modifications,
including implementation of stormwater infiltration or volume retention practices, where soils are
conducive.
10.3.1.1 7411 Coventry Way (SWP_14)
A small stormwater pond is located in the backyard of 7411 Coventry Way. The small stormwater
pond outlets to a larger pond located directly east, across Delaney Boulevard (SWP_5) through a
15-inch storm sewer system. During extreme storm events, such as the 100-year frequency event, the
flood elevation of the larger pond east of Delaney Boulevard increases and flow reverses in the
15-inch system connecting the two ponds, equalizing the ponds. The 100-year frequency flood
elevation for both ponds (SWP_14 and SWP_5) is 833.6 MSL. Based on the 2-foot topographic data,
this flood elevation would affect the structure at 7411 Coventry Way. To prevent flooding at 7411
Coventry Way, it is recommended that a flapgate be installed at the outlet of the small pond to
prevent backflow from the larger pond. With installation of a flapgate, the 100-year frequency flood
elevation of the small pond is 830.6 MSL.
10.3.1.2 7317 Cahill Road (SWP_46)
A low depression area exists along Cahill Road just north of the Cahill and Dewey Hill Road
intersection and extends eastward into the parking lot of 7317 Cahill Road. During intense rainfall
events, such as the 100-year frequency storm, this low area becomes inundated. The 100-year
frequency flood elevation in this area is 833.8 MSL. Based on the 2-foot topographic data, this flood
elevation will impact the structure at 7317 Cahill Road. However, because the flood elevations of
the two stormwater ponds in Lewis Park north of Dewey Hill Road (SWP_35 and SWP_34) and the
stormwater pond on the south side of Dewey Hill Road (SWP_5) are nearly as high, options to
reduce the flooding of the road and parking lot of 7317 Cahill Road are limited. It is recommended
that options to lower the flood elevation of this area be further investigated as road improvement
projects are planned in the area in the future.
10.3.1.3 7709 Stonewood Court (NM494_4)
A stormwater pond is located northeast of the Stonewood Court and Gleason Road intersection. The
basin is drained by a 12-inch storm sewer pipe with a negative slope that acts as an inlet and an
outlet, depending upon the water level in the pond. The water level of the pond is controlled by the
pipe invert downstream of the outlet on the west side of Gleason Road at Elevation 828.1 MSL. If
the water level in the pond is below 828.1 MSL, the storm sewer system that collects stormwater
Barr Engineering Company 10-6
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\Report\December 15 2011 FINAL
DRAFT\Edina_SWMP_FINAL_v1.docx
from Tanglewood Court and Gleason Road discharges to the pond. If the water elevation is higher
than 828.1 MSL, discharge from the stormwater pond will combine with stormwater from the
Tanglewood Court and Gleason Road system and will continue flowing southward towards the South
Fork of Nine Mile Creek.
During the 100-year frequency storm event, the flood elevation of this stormwater pond reaches
832.5 MSL. Based on a field survey, this flood elevation will impact the structure at 7723
Stonewood Court (low house elevation of 831.97 MSL). To protect this structure from the 100-year
flood elevation, it is recommended that the capacity of the downstream storm sewer system along
Stonewood Court be increased. Based on modeling results, increasing the size of pipes 1011p and
1012p from 12-inch diameter to 24-inch diameter will reduce the 100-year flood elevation of the
stormwater pond to 831.81 MSL, slightly below the low house elevation.
10.3.2 Construction/Upgrade of Water Quality Basins
The 2003 P8 modeling analysis indicated that the annual removal of total phosphorus from several
ponds in the Southwest Ponds drainage area was predicted to be below the desired 60 percent
removal rate, under average year conditions. For those ponds with total phosphorus removal below
60 percent, the permanent pool storage volume was analyzed to determine if additional capacity is
necessary. All of the basins were found to have sufficient dead storage volume, based on the MPCA
recommended permanent pool storage volume for detention basins. As a result, no specific
recommendations for water quality basin upgrades in the Southwest Ponds drainage basin are being
made at this time.
Construction of new or expansion of existing water quality basins is one method to increase the
pollutant removal achieved prior to stormwater reaching downstream waterbodies. Many additional
techniques are available to reduce pollutant loading, including impervious surface reduction or
disconnection, implementation of infiltration or volume retention BMPs, installation of underground
stormwater treatment structures and sump manholes and other good housekeeping practices such as
street sweeping. As opportunities arise, the City will consider all of these options to reduce the
volume and improve the quality of stormwater runoff.
Table 10.2
Watershed Modeling Results for Subwatersheds in the Southwest Ponds Drainage Basin (Revised 12/2006)
Watershed ID
Total Area
(ac)
% Impervious
Area
Peak Runoff Rate
(cfs)
Total Volume
Runoff (ac-ft)
Peak Runoff Rate1
(cfs)
Total Volume
Runoff (ac-ft)
NM494_1 9.5 19 42.4 2.60 22.6 0.54
NM494_2 5.4 18 23.7 1.39 11.1 0.25
NM494_3 7.1 13 28.8 1.77 11.4 0.31
NM494_4 5.3 30 24.3 1.70 16.6 0.39
NM494_5 12.9 20 53.7 3.63 27.2 0.74
NM494_6 7.7 22 35.2 2.22 21.0 0.49
NM494_7 2.1 20 9.6 0.59 5.6 0.13
SWP_1 4.2 44 20.0 1.61 16.6 0.40
SWP_10 4.5 34 20.0 1.34 12.5 0.27
SWP_11 2.6 30 10.6 0.70 5.6 0.12
SWP_12 2.0 27 9.1 0.54 6.0 0.11
SWP_13 1.3 13 6.3 0.38 5.0 0.10
SWP_14 2.7 21 12.7 0.87 8.5 0.21
SWP_15 0.7 19 2.5 0.21 1.2 0.04
SWP_16 3.9 30 16.9 1.14 9.8 0.23
SWP_17 2.8 30 7.3 0.77 3.0 0.12
SWP_18 3.3 20 15.1 0.92 9.5 0.21
SWP_19 6.4 20 29.6 1.80 18.3 0.41
SWP 2 13.3 48 62.8 5.08 50.7 1.25
Watershed Information 10-Year Storm Results
1/2-Hour Event24-Hour Event
100-Year Storm Results
SWP_2 13.3 48 62.8 5.08 50.7 1.25
SWP_20 3.6 20 16.2 1.02 9.7 0.23
SWP_21 2.9 16 13.6 0.84 10.2 0.21
SWP_22 6.3 20 27.0 1.75 13.9 0.36
SWP_23 3.3 20 15.3 0.92 10.4 0.22
SWP_24 3.9 20 14.5 1.06 6.8 0.20
SWP_25 2.9 20 13.1 0.82 7.4 0.18
SWP_26 3.1 20 13.5 0.86 7.2 0.18
SWP_27 8.2 4 32.4 1.93 10.4 0.33
SWP_28 8.9 8 38.1 2.15 14.6 0.39
SWP_29 4.6 44 21.6 1.58 17.4 0.37
SWP_3 29.1 26 121.8 8.45 66.6 1.70
SWP_30 2.5 34 10.7 0.78 6.4 0.17
SWP_31 11.0 50 51.0 4.21 37.8 1.02
SWP_32 23.6 71 108.3 9.51 72.8 2.23
SWP_33 2.3 30 10.3 0.73 6.9 0.17
SWP_34 16.7 18 75.2 5.65 44.0 1.31
SWP_35 11.3 21 48.4 3.89 27.0 0.88
SWP_36 7.7 20 35.9 2.21 23.7 0.52
SWP_37 2.3 22 10.5 0.87 7.3 0.20
SWP_38 4.7 19 21.4 1.32 12.5 0.29
SWP_39 12.9 20 58.0 3.63 32.5 0.78
SWP_4 13.0 38 60.4 4.75 46.3 1.16
SWP_40 2.6 35 12.3 0.82 9.5 0.19
SWP_41 2.5 65 11.9 0.95 13.1 0.23
SWP_42 4.3 46 18.8 1.40 11.1 0.28
SWP_43 3.5 59 16.1 1.28 10.4 0.28
SWP_44 2.4 74 11.2 1.03 7.8 0.25
1 In some cases, the 10-year peak runoff rate is higher than the 100-year peak runoff rate as a result of the differences in peak intensity of the
rainfall hydrographs.
10-7
Table 10.2
Watershed Modeling Results for Subwatersheds in the Southwest Ponds Drainage Basin (Revised 12/2006)
Watershed ID
Total Area
(ac)
% Impervious
Area
Peak Runoff Rate
(cfs)
Total Volume
Runoff (ac-ft)
Peak Runoff Rate1
(cfs)
Total Volume
Runoff (ac-ft)
Watershed Information 10-Year Storm Results
1/2-Hour Event24-Hour Event
100-Year Storm Results
SWP_45 1.4 78 6.3 0.61 4.8 0.15
SWP_46 11.6 63 49.1 4.52 26.9 1.03
SWP_47 21.5 22 76.2 6.35 36.5 1.24
SWP_48 0.8 15 3.7 0.20 2.5 0.05
SWP_49 3.7 20 17.2 1.04 10.7 0.24
SWP_5 6.5 54 31.3 2.56 37.8 0.68
SWP_50 8.4 20 36.5 2.41 19.6 0.51
SWP_51 6.9 20 29.0 1.90 14.7 0.38
SWP_52 8.2 20 36.9 2.30 20.4 0.49
SWP_53 13.5 20 55.3 3.86 27.6 0.79
SWP_54 12.3 20 55.9 3.48 32.5 0.76
SWP_55 3.5 20 15.7 0.98 8.7 0.21
SWP_56 7.5 20 33.7 2.30 19.6 0.52
SWP_57 1.7 30 7.8 0.48 4.8 0.09
SWP_58 2.0 30 9.4 0.64 6.8 0.15
SWP_59 12.3 37 52.6 4.07 30.7 0.87
SWP_6 5.1 20 19.2 1.29 8.5 0.20
SWP_60 9.8 29 32.0 2.91 14.7 0.54
SWP 61 53 20 23 4 139 11 8 026SWP_61 5.3 20 23.4 1.39 11.8 0.26
SWP_62 1.7 20 7.8 0.47 5.8 0.11
SWP_63 6.9 10 27.0 1.75 10.0 0.32
SWP_64 2.1 70 10.3 0.95 10.8 0.24
SWP_66 4.6 20 18.2 1.36 9.1 0.28
SWP_7 1.7 27 7.6 0.50 5.1 0.11
SWP_8 2.6 29 12.2 0.82 10.0 0.20
SWP_9 2.2 20 10.6 0.69 9.0 0.18
1 In some cases, the 10-year peak runoff rate is higher than the 100-year peak runoff rate as a result of the differences in peak intensity of the
rainfall hydrographs.
10-8
Table 10.3
Flood
Elevation1 (ft) Type of Storage
2 NWL (ft)
Flood
Bounce (ft)
Flood
Elevation
(ft) NWL (ft)
Flood Bounce
(ft)
1171 920 938.4 935.1
1172 921 932.4 926.6
1173 922 928.3 925.3
1174 923 923.8 923.4
1175 924 923.7 922.9
1176 925 922.6 921.6
1177 926 917.2 917.2
1178 927 899.0 897.2
1180 934 884.4 884.0
1182 930 886.4 886.2
1183 931 890.0 889.9
1184 932 894.5 894.3
1185 933 896.9 896.8
1186 935 881.1 878.5
1187 936 871.4 868.2
1188 937 854.7 854.4
1190 939 847.7 845.7
1191 940 845.7 street 843.7
Hydraulic Modeling Results for XP-SWMM Subwatersheds/Nodes in the Southwest Ponds Drainage Basin
(Revised 12/2006)
Subwatershed or
Node
Downstream
Conduit
100-Year Storm Results
24-Hour Event
10-Year Storm Results
1/2-Hour Event
1191 940 845.7 street 843.7
1192 941 843.6 841.9
1193 942 841.0 839.7
1197 945 842.4 842.4
1198 946 846.4 846.4
1205 952 835.0 832.7
1207 953 834.4 832.1
1208 955 833.8 831.5
1210 956 833.8 831.4
1211 957 833.8 831.3
1212 959 833.8 831.3
1215 960 833.8 831.2
1216 961 833.8 831.2
1219 963 835.8 834.7
1267 1000 844.9 842.8
1270 1002 842.7 840.5
1271 1003 842.7 840.4
1276 1006 844.5 839.5
1277 1007 845.4 street 840.3
1283 1012p 834.6 834.5
1285 1014 831.7 827.6
1286 1015 831.6 826.5
1288 outfall 821.3 820.5
1289 1017p 836.2 836.2
1290 1018p 840.9 835.7
1291 1019p 840.9 836.2
1292 1020p 841.3 838.3
1 100-year flood elevation based on 24-hour event. Flood elevation from a 10-day snowmelt event should also be evaluated prior to final
design/determination.
2 byd = backyard depression
10-9
Table 10.3
Flood
Elevation1 (ft) Type of Storage
2 NWL (ft)
Flood
Bounce (ft)
Flood
Elevation
(ft) NWL (ft)
Flood Bounce
(ft)
Hydraulic Modeling Results for XP-SWMM Subwatersheds/Nodes in the Southwest Ponds Drainage Basin
(Revised 12/2006)
Subwatershed or
Node
Downstream
Conduit
100-Year Storm Results
24-Hour Event
10-Year Storm Results
1/2-Hour Event
1295 1023 840.7 838.3
1296 1024 840.4 836.2
1299 1026 838.4 838.3
1306 1619 834.2 833.7
1310 1033 833.6 829.8
1318 1039 830.2 829.0
132 1028 835.4 833.3
1322 1041 833.4 829.7
1326 1044 829.9 825.6
1327 1045 825.7 825.4
1328 1046 825.5 825.2
1330 1048p 822.3 821.6
1331 1049p 822.3 818.3
1332 1050p 822.2 814.6
1333 1051p 817.8 813.3
1334 1052p 815.5 812.0
1335 outfall 815.3 810.3
1344 1057 833 8 831 213441057833.8 831.2
1350 1062 834.4 834.2
1354 1066 831.7 830.7
1356 1065 830.8 828.8
1660 1367 901.6 900.5
1661 1368 920.0 919.6
1662 1369 938.3 935.3
1663 1370 945.5 944.4
1665 1613 925.1 925.0
1667 1372 929.7 928.0
1676 1380 838.0 836.6
1678 1381 833.8 831.2
1857 1506 850.7 848.5
1859 1508 845.4 840.5
1860 1509 847.0 841.8
1866 1512 845.9 843.6
1894 1529 825.8 825.4
1895 1530 828.3 827.2
2424 1966p 836.5 836.4
2425 1967p 836.9 836.9
2426 1968p 837.4 837.1
2492 2023 833.8 park 826.3 7.4 830.9 832.6 4.2
2494 2025 942.2 ditch 937.4 4.8 937.4 833.3 3.8
2497 2030 834.5 833.1
2498 2029 834.1 832.1
2499 2027 833.8 831.5
NM494_1 1016 824.7 822.3
1 100-year flood elevation based on 24-hour event. Flood elevation from a 10-day snowmelt event should also be evaluated prior to final
design/determination.
2 byd = backyard depression
10-10
Table 10.3
Flood
Elevation1 (ft) Type of Storage
2 NWL (ft)
Flood
Bounce (ft)
Flood
Elevation
(ft) NWL (ft)
Flood Bounce
(ft)
Hydraulic Modeling Results for XP-SWMM Subwatersheds/Nodes in the Southwest Ponds Drainage Basin
(Revised 12/2006)
Subwatershed or
Node
Downstream
Conduit
100-Year Storm Results
24-Hour Event
10-Year Storm Results
1/2-Hour Event
NM494_2 1008p 840.9 834.0
NM494_3 1969p 837.8 837.5
NM494_4 1009p 832.5 pond 828.2 4.4 829.6 818.8 3.5
NM494_5 1013p 832.6 832.0
NM494_6 1011p 835.6 835.4
NM494_7 1021p 841.8 byd 838.0 3.8 840.0 828.2 1.4
SWP_1 1044 830.0 pond 827.0 3.0 827.4 826.0 6.0
SWP_10 1067 832.1 pond 830.1 2.0 831.0 827.2 8.2
SWP_11 1061 838.8 ditch 835.0 3.8 837.2 838.0 2.0
SWP_12 1064 830.4 828.8
SWP_13 1043 830.5 829.1
SWP_14 1032 833.6 pond 828.5 5.1 829.8 835.0 2.2
SWP_15 1034 833.6 829.8
SWP_16 1037 835.5 835.2
SWP_17 1055 833.6 829.8
SWP_18 1507 853.0 852.8
SWP_19 1029 847.4 847.2
SWP 2 2022 830 0 pond 828 0 20 829 0 827 8 20SWP_2 2022 830.0 pond 828.0 2.0 829.0 827.8 2.0
SWP_20 1505 840.9 street 839.7
SWP_21 1053 833.6 street 829.8
SWP_22 1511 845.9 street 843.6
SWP_23 1513 851.7 851.7
SWP_24 1001 843.0 byd 838.0 5.0 840.9 827.1 2.7
SWP_25 1004 842.6 840.2
SWP_26 999 843.7 street 840.4
SWP_27 1510 847.1 843.1
SWP_28 1005 844.4 839.5
SWP_29 1047 825.3 825.2
SWP_3 1028 839.5 pond 836.5 3.0 837.3 841.5 1.6
SWP_30 1531 829.2 829.1
SWP_31 landlocked 828.5 pond 827.1 1.4 827.5 817.6 7.6
SWP_32 landlocked 837.5 ditch 833.5 4.0 837.1 836.5 0.8
SWP_33 landlocked 839.8 depression 836.4 3.4 838.3 824.3 4.8
SWP_34 2046_p 833.8 pond 828.0 5.8 831.2 827.1 0.4
SWP_35 1054 833.8 pond 828.0 5.8 831.2 833.5 3.6
SWP_36 1379 839.6 839.1
SWP_37 landlocked 836.6 pond 835.4 1.2 836.0 828.0 3.3
SWP_38 948 835.5 835.3
SWP_39 947 857.3 857.2
SWP_4 1040 830.4 pond 828.6 1.9 829.1 835.4 0.6
SWP_40 landlocked 835.7 pond 828.1 7.6 829.3 829.7 5.6
SWP_41 1383 838.8 835.0
SWP_42 1620 838.5 833.8
SWP_43 1059 837.2 832.8
1 100-year flood elevation based on 24-hour event. Flood elevation from a 10-day snowmelt event should also be evaluated prior to final
design/determination.
2 byd = backyard depression
10-11
Table 10.3
Flood
Elevation1 (ft) Type of Storage
2 NWL (ft)
Flood
Bounce (ft)
Flood
Elevation
(ft) NWL (ft)
Flood Bounce
(ft)
Hydraulic Modeling Results for XP-SWMM Subwatersheds/Nodes in the Southwest Ponds Drainage Basin
(Revised 12/2006)
Subwatershed or
Node
Downstream
Conduit
100-Year Storm Results
24-Hour Event
10-Year Storm Results
1/2-Hour Event
SWP_44 1058 836.4 832.3
SWP_45 1382 833.8 831.3
SWP_46 3239_p 833.8 street/park lot 832.8
SWP_47 950 835.9 pond 832.0 3.9 833.6 830.3 2.6
SWP_48 1056 833.8 street 831.2
SWP_49 1371 958.4 956.0
SWP_5 1054 833.6 pond 828.0 5.6 829.8 828.3 4.6
SWP_50 1366 898.9 898.8
SWP_51 938p 851.6 849.4
SWP_52 1373 944.8 935.3
SWP_53 1377 851.6 street 848.9
SWP_54 928 887.6 887.4
SWP_55 1376 942.4 street 936.9
SWP_56 929 884.8 884.5
SWP_57 3299_p 836.8 pond 835.4 1.4 836.0 927.0 8.2
SWP_58 landlocked 840.8 depression 838.2 2.6 839.6 843.0 5.8
SWP_59 1038 830.7 wetland 828.7 2.0 829.4 880.5 6.9
SWP 6 1022 843 8 byd 837 9 59 843 4 936 0 09SWP_6 1022 843.8 byd 837.9 5.9 843.4 936.0 0.9
SWP_60 1566 835.9 parking lot 835.3
SWP_61 1025 840.4 street 835.7
SWP_62 landlocked 844.6 byd 838.8 5.8 842.2 838.2 1.4
SWP_63 954 833.8 depression 828.8 5.1 831.5 828.7 0.8
SWP_64 2028 835.3 parking lot 834.9
SWP_66 2024p 851.3 street 849.9
SWP_7 1042 832.6 829.5
SWP_8 1027 839.4 838.5
SWP_9 landlocked 828.5 depression 823.0 5.5 826.4 828.8 2.8
1 100-year flood elevation based on 24-hour event. Flood elevation from a 10-day snowmelt event should also be evaluated prior to final
design/determination.
2 byd = backyard depression
10-12
1
Table 10.4
Conduit Modeling Results for Subwatersheds in the Southwest Ponds Drainage Basin (Revised 12/2006).
Conduit ID Upstream Node Downstream Node Conduit Shape
Conduit
Dimensions* (ft)
Roughness
Coefficient
Upstream Invert
Elevation
(ft)
Downstream Invert
Elevation
(ft)
Conduit Length
(ft)Slope
100Y Peak Flow
through Conduit
(cfs)
10Y Peak Flow
through Conduit
(cfs)
1000 1267 SWP_3 Circular 2 0.024 839.55 835.90 203 1.80 21.2 18.0
1001 SWP_24 1270 Circular 1.5 0.013 838.04 837.35 138 0.50 7.6 6.6
1002 1270 1271 Circular 1.5 0.013 837.35 837.15 39 0.51 7.6 6.6
1003 1271 SWP_25 Circular 1.5 0.013 837.15 836.58 113 0.50 7.6 6.6
1004 SWP_25 SWP_3 Circular 1.5 0.013 836.58 835.75 166 0.50 15.0 11.3
1005 SWP_28 SWP_3 Circular 2.25 0.013 836.64 836.00 140 0.46 48.7 23.9
1006 1276 SWP_28 Circular 2.25 0.013 836.78 836.64 35 0.40 18.9 10.8
1007 1277 1276 Circular 2 0.013 838.50 836.98 380 0.40 18.9 10.7
1008p NM494_2 NM494_4 Circular 1.5 0.013 833.17 827.00 143 4.33 23.8 13.9
1009p NM494_4 NM494_6 Circular 1 0.013 825.69 827.17 170 -0.87 -6.4 -6.9
1011p NM494_6 1283 Circular 1 0.013 827.17 828.15 38 -2.58 5.6 5.6
1012p 1283 NM494_5 Circular 1 0.013 827.75 826.40 239 0.57 5.5 5.7
1013p NM494_5 1285 Circular 2 0.013 826.00 825.45 70 0.79 37.8 37.5
1014 1285 1286 Circular 2.75 0.013 824.95 823.20 215 0.81 38.7 37.8
1015 1286 NM494_1 Circular 2.75 0.013 823.20 821.50 232 0.73 80.7 49.0
1016 NM494_1 1288 Circular 4 0.024 818.80 818.00 59 1.36 121.4 69.1
1017p 1289 NM494_6 Circular 1.25 0.013 831.68 829.00 154 1.74 4.6 5.5
1018p 1290 NM494_2 Circular 1.5 0.013 835.00 833.17 175 1.05 4.8 3.4
1019p 1291 1290 Circular 1.25 0.013 835.41 835.00 38 1.08 4.4 3.5
1020p 1292 1291 Circular 1 0.013 837.30 835.41 200 0.95 4.2 3.5
1021p NM494_7 1292 Circular 1 0.013 838.00 837.30 140 0.50 4.2 3.5
1022 SWP_6 1295 Circular 1 0.013 837.90 836.10 177 1.02 5.5 5.4
1023 1295 1296 Circular 1 0.013 836.10 835.35 50 1.49 7.7 5.4
1024 1296 SWP_61 Circular 1.25 0.013 835.35 834.65 45 1.56 10.9 5.4
1025 SWP_61 SWP_2 Circular 1.5 0.013 834.40 826.50 240 3.29 20.5 17.1
1026 1299 SWP_8 Circular 1 0.013 833.64 831.95 135 1.25 -2.8 -1.9
1027 SWP_8 SWP_31 Circular 1 0.013 831.85 822.50 170 5.50 9.4 9.3
1028 132 SWP_4 Circular 1 0.013 831.47 828.17 122 2.71 6.7 4.8
1029 SWP_19 SWP_4 Circular 1.5 0.013 836.09 830.15 220 2.70 25.2 25.0
1032 SWP_14 1310 Circular 1.25 0.024 828.51 828.30 27 0.78 -4.0 1.6
1033 1310 SWP_15 Circular 1.25 0.024 828.30 828.05 28 0.89 -4.0 1.6
1034 SWP_15 SWP_5 Circular 1.25 0.024 828.05 827.50 62 0.89 -3.9 2.2
1037 SWP_16 SWP_59 Circular 1 0.013 829.48 828.40 27 4.00 10.9 8.8
1038 SWP_59 1318 Circular 2 0.013 828.65 827.91 74 1.00 13.4 4.1
1039 1318 SWP_2 Circular 2.5 0.024 827.62 826.53 97 1.12 13.4 4.8
1040 SWP_4 SWP_2 Circular 2.5 0.013 828.57 826.62 80 2.44 15.2 7.4
1041 1322 SWP_7 Circular 1.5 0.024 824.63 824.26 115 0.32 -5.6 -4.6
1042 SWP_7 SWP_13 Circular 1.5 0.024 824.26 823.14 255 0.44 5.0 -2.4
1043 SWP_13 SWP_2 Circular 1.5 0.024 818.33 818.23 51 0.20 8.3 5.7
1044 1326 1327 Circular 1.25 0.013 823.00 821.87 79 1.44 14.8 6.6
1045 1327 1328 Circular 1.25 0.013 821.87 820.30 124 1.27 8.9 6.9
1046 1328 SWP_29 Circular 1.25 0.013 820.30 819.64 55 1.20 11.2 7.0
1047 SWP_29 1330 Circular 1.5 0.013 817.60 816.62 183 0.54 14.5 14.5
1048p 1330 1331 Circular 1.5 0.013 816.62 815.62 187 0.53 13.9 13.5
1049p 1331 1332 Circular 1.5 0.013 815.62 814.62 98 1.02 13.9 13.6
1050p 1332 1333 Circular 2 0.013 813.12 811.72 291 0.48 27.9 13.7
1051p 1333 1334 Circular 2 0.013 811.72 810.95 161 0.48 27.8 13.8
1052p 1334 1335 Circular 3 0.024 810.95 809.28 70 2.39 27.8 13.8
1054 SWP_5 SWP_35 Arch 18" eq 0.024 826.87 826.85 120 0.02 -8.2 -6.9
1055 SWP_17 SWP_5 Circular 1.25 0.013 827.76 827.44 29 1.10 7.3 3.0
1057 1344 SWP_35 Circular 3.5 0.013 827.50 827.00 28 1.79 67.8 59.7
1058 SWP_44 1344 Circular 3 0.013 829.09 827.50 357 0.45 53.3 39.5
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\QAQC Model for Pond\NineMILe_SWMM_hydraulic_output_2006UPDATE_final_NWL_verification.xls SWP_ConduitResults Update
10-13
2
Table 10.4
Conduit Modeling Results for Subwatersheds in the Southwest Ponds Drainage Basin (Revised 12/2006).
Conduit ID Upstream Node Downstream Node Conduit Shape
Conduit
Dimensions* (ft)
Roughness
Coefficient
Upstream Invert
Elevation
(ft)
Downstream Invert
Elevation
(ft)
Conduit Length
(ft)Slope
100Y Peak Flow
through Conduit
(cfs)
10Y Peak Flow
through Conduit
(cfs)
1059 SWP_43 SWP_44 Circular 3 0.013 830.25 829.19 236 0.45 42.6 31.7
1061 SWP_11 1350 Circular 1 0.013 835.00 834.14 215 0.40 4.5 3.3
1062 1350 SWP_10 Circular 1 0.013 833.70 829.70 93 4.30 4.5 3.3
1064 SWP_12 SWP_1 Circular 2 0.024 827.64 826.49 115 1.00 14.8 5.9
1065 1356 SWP_12 Circular 1.5 0.024 828.14 827.64 28 1.79 8.6 2.8
1066 1354 1356 Circular 1.5 0.013 830.14 828.14 250 0.80 8.6 2.8
1067 SWP_10 1354 Circular 1.5 0.013 828.10 830.20 18 -11.67 8.6 2.8
1366 SWP_50 1185 Circular 1.5 0.013 893.30 891.49 97 1.87 22.5 24.0
1367 1660 SWP_50 Circular 1.5 0.013 896.48 893.30 112 2.85 15.4 12.5
1368 1661 1660 Circular 1.25 0.013 919.00 896.48 232 9.72 17.2 11.7
1369 1662 1661 Circular 1.25 0.013 933.48 919.00 160 9.04 17.3 10.8
1370 1663 1662 Circular 1.25 0.013 943.71 933.48 146 7.00 17.1 10.6
1371 SWP_49 1663 Circular 1.25 0.013 953.06 943.71 272 3.44 14.6 10.6
1372 1667 1665 Circular 1.75 0.013 919.71 918.15 178 0.88 24.6 20.2
1373 SWP_52 1667 Circular 1.5 0.013 927.02 919.96 181 3.90 29.9 20.3
1376 SWP_55 1171 Circular 1.5 0.013 936.04 933.77 148 1.53 15.6 8.7
1377 SWP_53 1190 Circular 1.75 0.013 843.04 842.71 41 0.82 29.6 25.3
1379 SWP_36 1676 Circular 4.5 0.013 835.00 834.46 150 0.36 165.6 145.9
1380 1676 SWP_35 Circular 4.5 0.024 834.46 824.12 110 9.40 165.3 144.7
1381 1678 1344 Circular 2.5 0.013 827.61 827.50 8 1.38 17.7 20.2
1382 SWP_45 1678 Circular 2 0.013 828.15 827.61 117 0.46 10.9 11.8
1383 SWP_41 SWP_42 Circular 2.5 0.013 833.80 831.87 386 0.50 14.4 13.1
1505 SWP_20 1306 Circular 1 0.013 834.92 832.52 130 1.85 7.8 7.4
1506 1857 SWP_19 Circular 1.5 0.013 837.84 836.29 172 0.90 15.1 9.3
1507 SWP_18 1857 Circular 1.25 0.013 841.23 838.05 218 1.46 9.2 9.2
1508 1859 1277 Circular 1.75 0.013 839.06 838.60 28 1.64 17.1 10.4
1509 1860 1859 Circular 1.75 0.013 840.70 839.06 186 0.88 18.3 10.5
1510 SWP_27 1860 Circular 1.75 0.013 841.53 840.70 208 0.40 14.2 10.4
1511 SWP_22 1267 Circular 2 0.013 840.23 839.55 25 2.72 21.2 19.2
1512 1866 SWP_22 Circular 1.5 0.013 840.50 840.23 38 0.71 10.9 9.0
1513 SWP_23 1866 Circular 1 0.013 848.04 840.50 310 2.43 5.9 5.9
1529 1894 SWP_29 Circular 1.25 0.013 818.40 817.80 91 0.66 4.1 3.5
1530 1895 1894 Circular 1 0.013 818.95 818.30 242 0.27 3.8 3.6
1531 SWP_30 1895 Circular 1 0.013 824.30 822.30 54 3.72 4.7 5.5
1566 SWP_60 1219 Special 1.52 0.013 832.30 832.21 47 0.19 12.6 13.5
1613 1665 1175 Circular 1.75 0.013 917.93 916.85 117 0.92 21.9 20.9
1619 1306 SWP_4 Circular 1.25 0.013 832.52 828.53 243 1.64 7.8 7.4
1620 SWP_42 SWP_43 Circular 2.5 0.013 831.77 830.65 284 0.39 28.8 23.5
1966p 2424 1289 Circular 1.25 0.013 831.96 831.68 50 0.56 4.6 5.4
1967p 2425 2424 Circular 1.25 0.013 832.63 831.96 120 0.56 4.6 5.4
1968p 2426 2425 Circular 1.25 0.013 833.33 832.63 125 0.56 4.6 6.0
1969p NM494_3 2426 Circular 1.25 0.013 833.89 833.33 100 0.56 4.6 6.5
2023 2492 1216 Circular 1 0.024 826.34 826.00 125 0.27 -2.6 -1.7
2024p SWP_66 SWP_51 Circular 1.5 0.013 843.51 843.00 127 0.40 16.2 8.5
2025 2494 SWP_52 Circular 1 0.013 937.38 937.00 38 1.00 7.3 0.0
2027 2499 SWP_45 Circular 1.75 0.013 828.60 828.35 38 0.66 6.6 7.4
2028 SWP_64 2497 Circular 1 0.013 831.50 829.91 33 4.82 6.7 7.9
2029 2498 2499 Circular 1.5 0.013 829.32 829.01 71 0.44 6.6 7.9
2030 2497 2498 Circular 1.25 0.013 829.70 829.32 71 0.53 6.7 7.9
2046_p SWP_35 SWP_34 Circular 1.5 0.013 824.52 827.93 109 -3.13 -5.7 4.9
3239_p SWP_46 1678 Circular 1.5 0.013 828.25 827.60 196 0.33 8.6 9.5
3299_p SWP_57 SWP_44 Circular 1 0.01 836.00 830.80 150 3.47 2.6 0.0
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\QAQC Model for Pond\NineMILe_SWMM_hydraulic_output_2006UPDATE_final_NWL_verification.xls SWP_ConduitResults Update
10-14
3
Table 10.4
Conduit Modeling Results for Subwatersheds in the Southwest Ponds Drainage Basin (Revised 12/2006).
Conduit ID Upstream Node Downstream Node Conduit Shape
Conduit
Dimensions* (ft)
Roughness
Coefficient
Upstream Invert
Elevation
(ft)
Downstream Invert
Elevation
(ft)
Conduit Length
(ft)Slope
100Y Peak Flow
through Conduit
(cfs)
10Y Peak Flow
through Conduit
(cfs)
1053 SWP_21 SWP_5 Circular 1.5 0.024 827.09 826.85 24 1.00 13.6 10.2
2022 SWP_2 SWP_1 Circular 2 0.024 828.00 827.00 36 2.78 11.6 4.5
920 1171 1172 Circular 1.5 0.013 933.77 931.50 148 1.53 15.6 8.6
921 1172 1173 Circular 1.25 0.013 924.95 920.66 56 7.66 15.5 8.6
922 1173 1174 Circular 1.25 0.013 920.66 917.63 101 3.00 13.2 8.6
923 1174 1175 Circular 1.5 0.013 917.63 917.36 26 1.04 8.5 8.6
924 1175 1176 Circular 2 0.013 916.39 915.87 55 0.95 33.2 28.1
925 1176 1177 Circular 2 0.013 915.87 912.84 316 0.96 35.5 28.1
926 1177 1178 Circular 1.75 0.013 912.84 896.03 286 5.88 36.6 29.6
927 1178 SWP_54 Circular 1.75 0.013 896.03 880.54 276 5.60 31.6 24.9
928 SWP_54 1180 Circular 2 0.013 880.54 878.54 67 3.01 43.0 39.9
929 SWP_56 1180 Circular 2.5 0.013 878.00 876.80 60 2.00 33.7 39.8
930 1182 SWP_56 Circular 1.75 0.013 881.21 878.00 117 2.76 22.6 26.3
931 1183 1182 Circular 1.75 0.013 884.73 881.21 149 2.36 22.6 24.2
932 1184 1183 Circular 1.75 0.013 889.11 884.73 219 2.00 22.1 23.8
933 1185 1184 Circular 1.75 0.013 891.49 889.11 74 3.24 26.1 26.1
934 1180 1186 Circular 2.5 0.013 876.80 874.12 144 1.86 86.5 86.5
935 1186 1187 Circular 2.25 0.013 874.12 863.96 106 9.56 99.7 89.5
936 1187 1188 Circular 2.25 0.013 863.96 847.78 172 9.43 87.3 78.6
937 1188 SWP_51 Circular 2.5 0.013 847.78 843.50 210 2.04 62.2 61.9
938p SWP_51 1190 Circular 3.5 0.013 838.32 837.14 346 0.34 105.7 93.4
939 1190 1191 Circular 4 0.013 837.14 836.68 211 0.22 133.6 117.7
940 1191 1192 Circular 4 0.013 836.68 835.90 253 0.31 126.1 112.0
941 1192 1193 Circular 4 0.013 835.90 835.21 312 0.22 126.1 112.0
942 1193 SWP_36 Circular 4 0.013 835.21 834.99 96 0.23 137.7 112.2
945 1197 SWP_36 Circular 1.75 0.013 837.17 836.50 168 0.40 19.5 19.5
946 1198 1197 Circular 1.5 0.013 840.48 837.42 70 4.40 18.7 18.6
947 SWP_39 1198 Circular 1.5 0.013 852.04 840.48 195 5.93 24.0 23.9
948 SWP_38 SWP_34 Circular 1.25 0.013 829.67 829.52 15 1.00 15.6 15.3
950 SWP_47 1205 Circular 1.25 0.013 831.98 830.58 277 0.51 3.8 3.9
952 1205 1207 Circular 1.25 0.013 830.58 829.82 170 0.45 3.7 3.6
953 1207 1208 Circular 1.25 0.013 829.82 828.12 211 0.81 3.7 3.6
954 SWP_63 1208 Circular 1 0.013 828.75 828.12 50 1.26 -2.3 4.3
955 1208 1210 Circular 1.5 0.013 828.12 827.65 118 0.40 4.1 5.4
956 1210 1211 Circular 1.75 0.013 827.65 827.09 140 0.40 4.0 5.4
957 1211 1212 Circular 2.25 0.024 827.09 826.54 71 0.78 4.0 5.4
959 1212 1215 Circular 2 0.013 826.54 826.34 89 0.23 4.0 5.4
960 1215 1216 Circular 2 0.013 826.34 825.85 89 0.55 -13.2 5.4
961 1216 SWP_34 Circular 3 0.024 825.85 826.02 210 -0.08 -14.5 -8.5
963 1219 SWP_47 Arch 24" eq 0.013 832.21 831.78 213 0.20 12.6 13.5
999 SWP_26 SWP_3 Circular 1.5 0.024 839.05 836.00 164 1.86 10.7 7.1
P:\Mpls\23 MN\27\23271072 Edina Water Resources Mgmt Plan Update\WorkFiles\QAQC Model for Pond\NineMILe_SWMM_hydraulic_output_2006UPDATE_final_NWL_verification.xls SWP_ConduitResults Update
10-15
70th St
Ca
h
i
l
l
R
d
Dewey Hill Rd
BloomingtonBloomington
SWP_3
SWP_32
SWP_47
SWP_34
SWP_2
SWP_4
SWP_53
SWP_39
SWP_54
SWP_59
NM494_5
SWP_46SWP_35
SWP_31
SWP_60
SWP_28
NM494_1
SWP_50
SWP_52
SWP_27
SWP_36
SWP_56
SWP_5
NM494_6
SWP_63
SWP_51
NM494_3
SWP_19
SWP_22
SWP_6
SWP_61
NM494_2
SWP_1
NM494_4
SWP_38
SWP_29
SWP_66
SWP_10
SWP_42
SWP_16
SWP_24
SWP_49
SWP_20
SWP_43
SWP_55
SWP_23
SWP_18
SWP_26
SWP_8
SWP_25
SWP_21
SWP_17SWP_14
SWP_40
SWP_11
SWP_9
SWP_44
SWP_37
SWP_33
SWP_64
SWP_58
SWP_12
NM494_7
SWP_7
SWP_57
SWP_45
SWP_41
SWP_30
SWP_62
SWP_13
SWP_48
SWP_15
!;N
Ba
r
r
F
o
o
t
e
r
:
D
a
t
e
:
1
1
/
3
/
2
0
0
9
1
0
:
4
7
:
5
1
A
M
F
i
l
e
:
I
:
\
C
l
i
e
n
t
\
E
d
i
n
a
\
P
r
o
j
e
c
t
s
\
C
R
W
M
P
_
U
p
d
a
t
e
_
2
0
0
9
\
M
a
p
s
\
R
e
p
o
r
t
s
\
F
i
g
u
r
e
s
_
C
i
t
y
R
e
v
i
e
w
D
r
a
ft
\
F
i
g
_
1
0
_
1
_
S
W
_
P
o
n
d
s
_
D
r
a
i
n
a
g
e
_
B
a
s
i
n
s
.
m
x
d
U
s
e
r
:
m
b
s
2
600 0 600
Feet
Figure 10.1
SOUTHWEST PONDS
DRAINAGE BASIN
Comprehensive Water Resource
Management Plan
City of Edina, Minnesota
200 0 200
Meters
City of Edina Boundary
Roads/Highways
Creek/Stream
Lake/Wetland
Southwest Ponds Drainage Basin
Subwatershed
Imagery Source: Aerials Express, 2008
10-16
NineMile Creek
Nine Mile I-494Nine Mile I-494
Southwest PondsSouthwest Ponds
Dewey Hill Rd
Ca
h
i
l
l
R
d
W 78th S
t
70th St
BloomingtonBloomington
!;N
Ba
r
r
F
o
o
t
e
r
:
D
a
t
e
:
1
1
/
3
/
2
0
0
9
1
0
:
4
8
:
5
1
A
M
F
i
l
e
:
I
:
\
C
l
i
e
n
t
\
E
d
i
n
a
\
P
r
o
j
e
c
t
s
\
C
R
W
M
P
_
U
p
d
a
t
e
_
2
0
0
9
\
M
a
p
s
\
R
e
p
o
r
t
s
\
F
i
g
u
r
e
s
_
C
i
t
y
R
e
v
i
e
w
D
r
a
ft
\
F
i
g
_
1
0
_
2
_
S
W
_
P
o
n
d
s
_
M
a
j
o
r
_
W
a
t
e
r
s
h
e
d
s
.
m
x
d
U
s
e
r
:
m
b
s
2
1,200 0
Feet
Figure 10.2
SOUTHWEST PONDS
MAJOR WATERSHEDS
Comprehensive Water Resource
Management Plan
City of Edina, Minnesota
400 0
Meters
City of Edina Boundary
Roads/Highways
Creek/Stream
Lake/Wetland
Southwest Ponds Drainage Basin
Major Watershed
Subwatershed
Imagery Source: Aerials Express, 2008
10-17
!.
!.!.
!.
!.
!.
!.
!.!.!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.!.
!.
!.!.!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.!.
!.!.
!.
!.
!.
!.!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.!.!.
!.
!.!.
!.
!.
!.!.
!.!.
!.
!.
!.
!.
!.!.!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.!.!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
LEWIS
R
I
D
G
E
P
K
W
Y
TER
G
L
E
A
S
O
N
R
D
TANGLEWOOD
WO
O
D
V
I
E
W
C
T
CT
STO
N
E
W
O
O
D
P
A
R
K
H
Y
D
E
CL
A
R
E
D
O
N
D
R
HI
L
L
R
D
DE
W
E
Y
D
R
HYDE PARK LA
GL
E
A
S
O
N
DEWEY
HYDE PARK CIR
BONNIE BRAE DR
KERRY
R
D
RD
V
A
L
L
E
Y
RD
D
U
B
L
I
N
ANTRIM
LEE
D
O
W
N
TR
B
R
A
K
E
BR
A
K
E
MA
R
T
H
C
T
TR
BR
A
K
E
78TH ST W
SH
A
U
G
H
N
E
S
S
Y
R
D
LO
N
G
LONG
CT
TE
R
R
LO
C
H
M
E
R
E
CIR
(OLD
S
T
H
W
Y
N
O
5
)
B
L
V
D
G
L
A
S
G
O
W
D
R
CA
H
I
L
L
R
D
FLE
E
T
W
O
O
D
D
R
SH
A
N
N
O
N
KEMRICH
DR
S
H
A
N
N
O
N
SHA
N
N
O
N
C
I
R
LON
G
HILL RD
LA
N
H
A
M
DR
CO
V
E
N
T
R
Y
W
A
Y
DR
SH
A
N
N
O
N
D
R
LA
N
H
A
M
L
A
DR
SHANNON
A
N
T
R
I
M
AN
T
R
I
M
R
D
C
T
RD
LA
N
H
A
M
L
A
FL
E
E
T
W
O
O
D
D
R
LA
AM
U
N
D
S
O
N
A
V
E
TA
R
A
R
D
DE
L
A
N
E
Y
B
L
V
D
CA
H
I
L
L
R
D
CA
H
I
L
L
R
D
DEWEY
OAK GLEN
SO
O
L
I
N
E
R
R
C
O
SO
O
L
I
N
E
R
R
C
O
HILL
SH
A
N
N
O
N
DR
Lewis
Park
Warming
Hse
BloomingtonBloomington
SWP_3
SWP_32
SWP_47
SWP_34
SWP_2
SWP_4
SWP_53
SWP_39
SWP_54
SWP_59
NM494_5
SWP_46
SWP_35
SWP_31
SWP_60
SWP_28
NM494_1
SWP_50
SWP_52
SWP_27
SWP_36
SWP_56
SWP_5
NM494_6
SWP_63
SWP_51
NM494_3
SWP_19
SWP_22
SWP_6
SWP_61
NM494_2
SWP_1
NM494_4
SWP_38
SWP_29
SWP_66
SWP_10
SWP_42
SWP_16
SWP_24
SWP_49
SWP_20
SWP_43
SWP_55
SWP_23
SWP_18
SWP_26
SWP_8
SWP_25
SWP_21
SWP_17
SWP_14
SWP_40
SWP_11
SWP_9
SWP_41
SWP_30
SWP_44
SWP_37
SWP_33
SWP_64
SWP_58
SWP_12
NM494_7
SWP_7
SWP_57
SWP_62
SWP_45
SWP_13
SWP_48
SWP_15
1288
1285
1895
1894
1335
1334
1333
1332
1331
1330
2900
2573
2499
2498
2497
2491
2490
2426
2425
2424
1857 1856
1678
1675
1671
1670
1663
1662
1661
1358 1356
1355
1354
1351
1350
1345
1344
1343
1341
1339
1338
1337
1325
1321
1320
1319
1318 1317
1316
1312
1309
1308
1306
1305
13031302
1301
1298
1292
1291
1290
1289
1283
1281
1279
1276
1275
1273
1271
1270
1269
1268
1267
1266
1220 1219
1216
1214
1210
1208
1207
1206
1205
1204
1203
1202
1201
1192
1190
1172
1171
SWP_8
SWP_57
SWP_41
SWP_45
SWP_55
SWP_52
SWP_12
SWP_13
SWP_28
SWP_25
SWP_36
NM494_7
NM494_1
2494
1860
1859
1676
1667
1660
1328
1327
1326
1310
1296
1295
1286
1277
1215
1212
1211
1193
1178
1176
1175
1173
SWP_7
SWP_60
SWP_27
SWP_42
SWP_49
SWP_43
SWP_44
SWP_48
SWP_17
SWP_21
SWP_15
SWP_61
SWP_26
NM494_2
2492
1866
1665
1322
1299
1198 11971191
1188
1187
1186
1185
1184
1183
1182
1180
1177
1174
SWP_6
SWP_64
SWP_66
SWP_30
SWP_23
SWP_22
SWP_18 SWP_20
SWP_53
SWP_50
SWP_29
SWP_16
SWP_19
SWP_63
SWP_38
SWP_39
SWP_51
SWP_56 SWP_54
NM494_3
NM494_5
NM494_6
Ba
r
r
F
o
o
t
e
r
:
D
a
t
e
:
1
1
/
3
/
2
0
0
9
1
1
:
5
3
:
5
0
A
M
F
i
l
e
:
I
:
\
C
l
i
e
n
t
\
E
d
i
n
a
\
P
r
o
j
e
c
t
s
\
C
R
W
M
P
_
U
p
d
a
t
e
_
2
0
0
9
\
M
a
p
s
\
R
e
p
o
r
t
s
\
F
i
g
u
r
e
s
_
C
i
t
y
R
e
v
i
e
w
D
r
a
ft\
F
i
g
_
1
0
_
3
_
S
W
_
P
o
n
d
s
_
H
y
d
r
a
u
l
i
c
_
M
o
d
e
l
_
R
e
s
u
l
t
s
.
m
x
d
U
s
e
r
:
m
b
s
2
City of Edina Boundary
Roads/Highways
Creek/Stream
Lake/Wetland
Southwest Ponds
Drainage Basin
Subwatershed
Potential Flooding During
100-Year Frequency Event
Pipes
!.Manhole
!.
Manhole Surcharge During
100-Year Frequency Event
!.
Manhole Surcharged During
10-Year Frequency Event
!;N
200 0 200
Feet
Figure 10.3
SOUTHWEST PONDS
HYDRAULIC MODEL RESULTS
Comprehensive Water Resource
Management Plan
City of Edina, Minnesota
60 0 60 120
Meters
10-18
BloomingtonBloomington
SWP_2
SWP_4
SWP_31
SWP_35
SWP_1
SWP_3
SWP_5
SWP_59
SWP_47
NM494_4
SWP_34
SWP_37
SWP_10
SWP_14
SWP_40
SWP_58
SWP_9
SWP_33
SWP_57
!;N
Ba
r
r
F
o
o
t
e
r
:
D
a
t
e
:
1
1
/
3
/
2
0
0
9
1
0
:
4
9
:
4
3
A
M
F
i
l
e
:
I
:
\
C
l
i
e
n
t
\
E
d
i
n
a
\
P
r
o
j
e
c
t
s
\
C
R
W
M
P
_
U
p
d
a
t
e
_
2
0
0
9
\
M
a
p
s
\
R
e
p
o
r
t
s
\
F
i
g
u
r
e
s
_
C
i
t
y
R
e
v
i
e
w
D
r
a
ft
\
F
i
g
_
1
0
_
4
_
S
W
_
P
o
n
d
s
_
W
a
t
e
r
_
Q
u
a
l
i
t
y
.
m
x
d
U
s
e
r
:
m
b
s
2
600 0 600
Feet
Figure 10.4
SOUTHWEST PONDS
WATER QUALITY
MODELING RESULTS
Comprehensive Water Resource
Management Plan
City of Edina, Minnesota
200 0 200
Meters
Imagery Source: Aerials Express, 2008
25 - 40% (Moderate Removal)
40 - 60% (Good Removal)
60 - 100% (Excellent Removal)
25 - 40% (Moderate Removal)
40 - 60% (Good Removal)
60 - 100% (Excellent Removal)
Percent TP Removal in Water Body*
This number represents the percent of the total annual mass
of phosphorus entering the water body that is removed.
Cumulative TP Removal in Watershed*
This number represents the percent of the total annual mass
of phosphorus entering the watershed and upstream watersheds
that is removed in the pond and all upstream ponds.
Flow Direction
*Data based on results of P8 modeling.
0 - 25% (Poor/No Removal)
10-19
!.
!.!.
!.
!.
!.
!.
!.!.!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.!.
!.
!.!.!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.!.
!.!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.!.!.
!.
!.!.
!.
!.
!.!.
!.!.
!.
!.
!.
!.
!.!.!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.!.!.
!.
!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
SWP_3
SWP_32
SWP_47
SWP_34
SWP_2
SWP_4
SWP_53
SWP_39
SWP_54
SWP_59
NM494_5
SWP_46
SWP_35
SWP_31
SWP_60
SWP_28
NM494_1
SWP_50
SWP_52
SWP_27
SWP_36
SWP_56
SWP_5
NM494_6
SWP_63
SWP_51
NM494_3
SWP_19
SWP_22
SWP_6
SWP_61
NM494_2
SWP_1
NM494_4
SWP_38
SWP_29
SWP_66
SWP_10
SWP_42
SWP_16
SWP_24
SWP_49
SWP_20
SWP_43
SWP_55
SWP_23
SWP_18
SWP_26
SWP_8
SWP_25
SWP_21
SWP_17
SWP_14
SWP_40
SWP_11
SWP_9
SWP_41
SWP_30
SWP_44
SWP_37
SWP_33
SWP_64
SWP_58
SWP_12
NM494_7
SWP_7
SWP_57
SWP_62
SWP_45
SWP_13
SWP_48
SWP_15
!.
!.
!.
!N